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1. INTRODUCTION

The problem of measuring the coordinates of
gamma-ray bursts with a high accuracy is, probably, the
most crucial for understanding their physical nature.
But, though space gamma-ray bursts were discovered
about 25 years ago, their origin is still a mystery. The
range of existing hypotheses is enormous: from the
generation of gamma-ray bursts inside the solar system
(as a result of reconnection of magnetic field lines of
the solar wind with emitting the released energy in the
form of x-rays and gamma-rays) up to sources far out-
side the solar system, in the limit at cosmological dis-
tances with a red shift 

 

z

 

 

 

≥

 

 1 [1].
The typical accuracy of coordinate determination

for gamma-ray bursts in the fourth BATSE catalog is a
few degrees. Only several hundred gamma-ray bursts
were localized with better accuracy (a few angular min-
utes) by measuring the time lags of recording a burst
aboard two or more spacecraft separated from one
another by a distance of the order of 1 a.u. This method
of space triangulation seems to be the most promising
for high-accuracy measurements of the coordinates of
gamma-ray bursts. It is precisely this method that we
consider in this paper.

Two years ago, the Italian–Dutch experiment on the

 

Beppo-SAX

 

 satellite realized for the first time prompt
optical and x-ray identification of some gamma-ray
bursts. X-ray and optical coordinates were determined
for several objects 8–10 h after the time of gamma-ray
burst recording. In the sole case of the gamma-ray burst
GRB990123, the optical transient was found 20 s after
its detection in the gamma-ray range. In this case, the
specially designed automatic telescope ROTSE was
used, which detected an optical object of 8

 

m

 

 visual
magnitude. For the rest of the cases the afterglow was
studied with large ground-based telescopes when the
visual magnitudes of the objects were diminished down

to 18

 

m

 

–20

 

m

 

. For several objects with afterglow, it was
possible to determine their red shifts, which turned out
to be equal to 

 

z

 

 = 0.8–2.5 [1]. Thus, the impression of
the triumph of the cosmological theory of the origin of
gamma-ray bursts has been gained. However, scientists
do not all follow this point of view. At 

 

z

 

 

 

≥

 

 1, the cosmo-
logical origin of gamma-ray bursts would lead to an
enormous luminosity of corresponding objects, reach-
ing 

 

10

 

54

 

 erg/s in x-rays and gamma rays (

 

10

 

49

 

 erg/s in
the optical waveband), which is close to the total lumi-
nosity of all stars in the universe. Attempts at theoreti-
cal explanations of such fantastic luminosity are met
with serious difficulties that can be surmounted by
assuming the distances to gamma-ray sources are much
smaller than cosmological distances. For this reason,
one should persist in attempting to measure precise
coordinates of many gamma-ray bursts, even with time
delays after the bursts of the order of several days.

In this paper, we suggest the idea of a space experi-
ment fully devoted to the problem of high-precision
measurements of the celestial coordinates of gamma-
ray bursts. The essence of the experiment is as follows.
If there are two spacecraft separated by a certain dis-
tance 

 

L

 

 (Fig. 1) and the arrival time of a gamma-ray
burst signal is recorded, then, using the difference in
these times, one can determine the angle 

 

α

 

 between the
gamma-ray source direction and the line connecting the
two spacecraft by the following formula:

 

(1)

 

The error 

 

E

 

α

 

 of measuring this angle is related to the
error of measuring the time, 

 

E

 

t

 

, and the error of deter-
mining the base length, 

 

E

 

L

 

, by the formula

 

(2)

αcos
c∆t
L

--------.=

Eα
1

L αsin
--------------- Etc EL αcos+( ).=

 

High-Precision Space Astrometry of Gamma-Ray Bursts

 

S. M. Kopeikin

 

1, 2

 

, V. G. Kurt

 

2

 

, and O. S. Ougolnikov

 

2

 

1

 

 Department of Physics and Astronomy, University of Missouri-Columbia, Physics Building 223, Columbia, MO, 65211 USA

 

2

 

 Astro-Space Center, Lebedev Physical Institute Russian Academy of Sciences, 
Profsoyuznaya ul. 84/32, Moscow, 117810 Russia

 

Received January 19, 2000

 

Abstract

 

—The principles of high-accuracy triangulation determination of coordinates of gamma-ray bursts are
considered, and an algorithm for three-spacecraft measurements is suggested. The general relativity equations
are used to describe the four-dimensional transformation of conversions between barycentric, geocentric, and
instrumental coordinate systems. Various mutual locations of spacecraft are analyzed. The measurement error
for time lags of a gamma-ray burst signal for different spacecraft is estimated, depending on the parameters of
both the burst and the detector. This allowed us to estimate the maximum achievable accuracy of the triangula-
tion method when measuring coordinates of gamma-ray bursts.



 

COSMIC RESEARCH

 

      

 

Vol. 38

 

      

 

No. 4

 

      

 

2000

 

HIGH-PRECISION SPACE ASTROMETRY OF GAMMA-RAY BURSTS 371

 

Notice that the accuracy of measuring the angle will be
maximum at 

 

α

 

 = 90°

 

. Knowing the angle 

 

α

 

, we localize
the gamma-ray burst in a certain ring on the celestial
sphere with a width equal to the accuracy of determina-
tion of the angle 

 

α

 

 and with a center determined by the
line connecting the spacecraft. If the system is com-
pleted by a third spacecraft not lying on the line con-
necting the first pair of spacecraft, then a gamma-ray
burst will be localized in two small areas on the celes-
tial sphere. To choose the right one of these areas is now
no problem. This can be done, for example, by using
the detectors with directivity diagrams, which are ori-
entated at an angle of 

 

180°

 

 to each other.
In order to measure the coordinates of gamma-ray

bursts with an accuracy of 

 

1

 

″

 

, the orbit control system
(OCS) should allow the spatial coordinates of space-
craft to be measured with an accuracy of not lower than
10 km. The spacecraft should be also equipped with
atomic standards of frequency, whose stability over a
period of one year must be of the order of 

 

10

 

–12

 

. In addi-
tion, the time scale in the spacecraft’s frame of refer-
ence should have no systematic deviation from the
Earth’s time scale exceeding 100 

 

µ

 

s per year. Obvi-
ously, the accuracy of coordinate measurements for a
gamma-ray burst will be dependent not only on reliable
operation of the onboard instruments but also on the
parameters of the burst itself: its brightness, duration,
and the scale of variability.

In order to determine the coordinates of a gamma-
ray burst with a high accuracy, one should convert the
instants of recording the signal from the onboard time
into a certain standard scale, for example, the barycen-
tric time scale of the Solar system. This conversion can
be properly made only in the case, when the procedure
of synchronization of the onboard and ground clocks
has an accuracy no worse than the accuracy of signal
recording, i.e., 100 

 

µ

 

s. For such a high precision to be
maintained over a long time, all relativistic corrections
should be carefully taken into account when processing
the data. For example, the secular deviation of the
Earth’s time relative to the barycentric time comprises
0.32 s per year and the amplitude of annual periodic
variations is 1.6 ms [2]. The relativistic effects in time
transformation that arise due to the spacecraft motion
with respect to each other and relative to an observer on
the Earth are approximately of the same order.

Determination of spacecraft orbits requires that the
additional perturbations due to nongravitational forces
be taken into account. The pressure of the solar wind
and solar electromagnetic radiation and the effect of
uncontrolled gas leakage from the spacecraft pressur-
ized compartment are the most considerable of these
perturbations. To adjust for the influence of such
effects, one needs to carry out periodic trajectory mea-
surements, which will allow the spacecraft locations to
be predicted with accuracy of the order of 10 km.

The method of space triangulation for measure-
ments of the source positions for gamma-ray bursts

passed an evaluation test during the first investigations
of gamma-ray bursts in 1976 onboard the spacecraft

 

Pioneer Venus, Helios, Venera

 

, and the satellites of the

 

Prognoz

 

 series. However, these measurements were
made only in some isolated cases and their accuracy
was not sufficient for identification of gamma-ray
bursts with known objects. In this paper, we extend the
idea of space triangulation with present-day theoretical
concepts and modern technology capabilities taken into
account. The procedure described below properly takes
into consideration all effects of special and general rel-
ativity, including second-order terms in the velocity of
light. It is based on the theory of relativistic time scales
in the Solar system [3–5] approved by the IAU decrees.
We expect that the use of this method will allow one to
identify the positions of gamma-ray bursts with optical
sources for a fairly great number of observed bursts,
and, thus, the problem of their physical nature will
finally be solved.

2. THE SPATIAL ARRANGEMENT
OF SPACECRAFT

Consider a system of space vehicles measuring the
coordinates of gamma-ray bursts by the triangulation
method. Every vehicle is equipped with detectors of
gamma-rays and high-stability clocks. The velocities of
spacecraft and distances to them are measured in the
mission control center. The instants of gamma-ray burst
signals are also recorded there in onboard times, with
an accuracy specified above. Three possible models of
arranging the spacecraft in the Solar system are sug-
gested: 

 

A

 

, 

 

B

 

, and 

 

C

 

. All three spacecraft move in the
ecliptic plane, so that, in any model, the first spacecraft
is placed in a circular heliocentric orbit with a radius of
1 a.u.

In the model 

 

A

 

, the elliptic orbit of the second space-
craft has the following parameters: a perihelion dis-
tance of 0.625 a.u., aphelion distance 1 a.u., eccentric-
ity 0.23, and an orbital period of 268 days. The orbit of
the third spacecraft is characterized by a perihelion dis-
tance 1 a.u., an aphelion distance of 1.33 a.u., eccentric-
ity of 0.14, and an orbital period of 460 days. The injec-
tion of the vehicles into the given orbits is fairly cost-
effective from the viewpoint of fuel consumption [6].

 

21

 

L

 

α

 

Fig. 1.

 

 Detection of a gamma-ray source by two spacecraft.
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In model 

 

B

 

, the orbits of the second and third vehi-
cles are also circular with a radius of 1 a.u. In its motion
along the orbit, the second vehicle is ahead of the first
one by 

 

60°

 

, while the third vehicle lags behind the first
one by 

 

60°

 

.

However, the third model 

 

C

 

 seems to be the most
effective. It is presented in Fig. 2. Here, all three space-
craft move along circular orbits with a radius of 1 a.u.,
lagging behind each other by 

 

120°

 

, so that an equilat-
eral triangle is formed with a side 

 

L

 

 equal to 1.72 a.u.
The advantage of this model as compared to models 

 

A

 

and 

 

B

 

 is that the distance between spacecraft is constant
and has the maximum value. The drawback of the 

 

C

 

model lies in the fact that, when observing from the
Earth, one spacecraft will always be at an angular dis-
tance of less than 

 

30°

 

 from the Sun, which can create
interferences preventing stable radio communication.
Nevertheless, this problem can be solved with modern
transmission facilities.

In view of the fact that a better accuracy of measur-
ing the coordinates of gamma-ray bursts will be
achieved near the ecliptic poles (in the direction per-
pendicular to all sides of the triangle) and the poorest
accuracy will be achieved in the ecliptic plane, it is
worthwhile to equip every spacecraft with at least two
gamma-ray detectors directed to the different ecliptic
poles.

3. FRAMES OF REFERENCES USED 
IN SPACE ASTROMETRY

The relativistic theory of conversion between the
frames of reference in the problem of 

 

N

 

 gravitating
bodies was developed in a series of papers [7–9] (see
also [3–4]). A similar approach was suggested in [10],
whose main distinction is in the fact that the Newtonian
expressions for multipole moments of extended bodies
generating the gravitational field were replaced by their
relativistic analogs. The theory completely describes
the structure of the gravitational field in the local (topo-
centric, instrumental, and geocentric) and global (bary-
centric) coordinate systems and gives the relativistic
formulas of conversion between them, which general-
ize the Lorentz transformation for the case of a curved
space–time. We have used the results of [4] to describe
the transformations of coordinates and time, which are
necessary for processing the data of astrometric obser-

vations of gamma-ray bursts. The formulas derived in
[10] have the same form.

 

3.1. Instrumental Frame of Reference

 

The instrumental frame of reference (

 

τ

 

,

 

 

 

x

 

) has its
origin in the center of mass of a spacecraft. The time 

 

τ

 

coincides with the proper time of a clock placed in the
origin of coordinates. It is worthwhile to fix the spatial
coordinate axes relative to reference stars (quasars),
though this is of no principal importance, since we are
only interested in the time of signal detection.

 

3.2. Geocentric Frame of Reference

 

The origin of the geocentric frame of reference (

 

u

 

,

 

w

 

) is placed in the center of mass of the Earth. The time

 

u

 

 is referred to as the Geocentric Time (GCT). Its rela-
tion to the International Atomic Time (TAI) and Uni-
versal Coordinated Time (UTC) is defined by Resolu-
tion 

 

A4

 

 of the IAU General Assembly in 1994 (see also
[4]). The spatial coordinate axes of the kinematically
nonrotating geocentric system [3] are fixed relative to
quasars, whose proper motion can be ignored. The geo-
centric coordinate system is necessary for determina-
tion of the coordinates and velocities of a terrestrial
observer and a spacecraft. The coordinates and veloci-
ties of the terrestrial observer are determined in the
geocentric system using the data of the International
Earth’s Rotation Service (IERS). The spacecraft coor-
dinates and velocity are calculated using the data of
radar and Doppler sounding. Synchronization of
ground and onboard clocks is sustained with the help of
well-known and evaluated procedures of intercompari-
son of clocks by electromagnetic signals.

 

3.3. Barycentric Frame of Reference

 

The barycentric frame of reference (

 

t

 

, 

 

x

 

) has its ori-
gin in the barycenter of the Solar system. The time 

 

t

 

 is
referred to as the barycentric time (BCT). Its relation to
the geocentric time is also defined by Resolution 

 

A4

 

 of
the IAU General Assembly in 1994. The spatial coordi-
nate axes are also fixed with respect to quasars. The
geocenter position and velocity are determined from
the DE200/LE200 ephemerides or are comparable to
them in accuracy. The barycentric coordinate system is
used for constructing the precise theory of motion of
the Earth and spacecraft relative to the Solar system
barycenter.

4. RELATIVISTIC TRANSFORMATIONS 
OF COORDINATES

 

4.1. Transformations between the Geocentric 
and Barycentric Systems

 

With the required accuracy, relativistic transforma-
tions between the geocentric and barycentric coordi-

 

2

3

120°

 

Sun

Earth

 

1
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Fig. 2.

 

 Disposition of three Sun-orbiting spacecraft (model

 

 C
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nate systems are described by the following equations:

 

(3)

(4)

 

Here, the point “·” between two vectors denotes their
scalar product, 

 

t

 

0

 

 is the initial epoch of observations, 

 

c

 

is the velocity of light, 

 

R

 

E

 

 = 

 

x

 

 – 

 

x

 

E, x is the barycentric
coordinates of an observer, xE is the barycentric coordi-
nates of the geocenter, vE = dxE /dt is the barycentric
velocity of the geocenter, and L0 is the mean distance
from the Earth to the Sun. The gravitational potential at
the geocenter is calculated by the formula

(5)

where G is the gravitational constant, MA is the mass of
the Ath gravitating body (A = 1, 2, …, N), and REA is the
distance between the geocenter and the center of mass
of body A. The Earth’s proper gravitational field is dis-

regarded. The terms of the order O  and O(c–4)

are omitted in formula (4), because they are very small
in comparison with other terms of the post-Newtonian
expansion (in [11], this point is considered in more
detail).

4.2. Transformations between the Instrumental 
and Barycentric Systems

With the required accuracy, the relativistic transfor-
mations between the instrumental and barycentric
coordinate systems are described by the following
equations:

(6)

(7)

u t
1

c2
---- 1

2
---v E

2 U xE( )+ 
  t vE RE⋅( )+d

t0

t

∫–=

+ O c 4–( ),

w RE
1

c2
---- 1

2
---vE vE RE⋅( ) REU xE( )++=

+ O c 2– RE
2

L0
2

------
 
 
 

O c 4–( ).+

U xE( )
GMA

REA

------------,
A E≠
∑=

c 2– RE
2

L0
2

------
 
 
 

τ t
1

c2
---- 1

2
---v S

2 U xS( )+ 
  t vS RS⋅( )+d

t0

t

∫– O c 4–( ),+=

x RS
1

c2
---- 1

2
---vS vS RS⋅( ) RSU xS( )++=

+ O c 2– RS
2

L0
2

-----
 
 
 

O c 4–( ).+

Here, t0 is the initial observation epoch, RS = x – xS, x is
the barycentric coordinates of a given point, xS is the
spacecraft barycentric coordinates, and vS = dxS/dt is
the barycentric velocity of the spacecraft. The gravita-
tional potential at the spacecraft location point is calcu-
lated by the formula

(8)

where RSA = |xS – xA | is the distance from the spacecraft
to the center of mass of body A. In this case, the Earth’s
gravitational field is taken into account. Again, the

terms of the order of O  and O(c–4) are omitted

due to their smallness.

If we substitute RS = 0 into formulas (6) and (7), the
resulting formula will convert the instrumental system
origin into the barycentric system. In this case, the
right-hand side of equation (7) vanishes and equation
(6) is simplified to the form

(9)

4.3. Transformations between the Instrumental 
and Geocentric Systems

Combining equations (3) and (9), we get the relation
between the intrinsic time of a spacecraft and the geo-
centric time

(10)

where RSE = xS – xE, and RSE = |RSE |. If the spacecraft
is far from the Earth, we can also disregard the influ-
ence of the Earth’s gravity. Then we arrive at the for-
mula

(11)

In addition if the spacecraft moves around the Sun
along the same orbit as the Earth, then formula (11) can
be further simplified:

(12)

U xS( )
GMA

RSA

------------,
A 1=

N

∑=

c 2– RS
2

L0
2

-----
 
 
 

τ t
1

c2
---- 1

2
---v S

2 U xS( )+ t O c 4–( ).+d

t0

t

∫–=

τ u
1

c2
---- 1

2
--- v E

2
v S

2–( )
GME

RSE

------------– td

t0

t

∫



+=

∫ + vE RSE⋅( )




O c 4–( ),+

τ u
1

c2
---- 1

2
--- v E

2
v S

2–( ) t vE RSE⋅( )+d

t0

t

∫ 
 
 

O c 4–( ).+ +=

τ u
1

c2
---- vE RSE⋅( ) O c 4–( ).+ +=
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Expression (11) should be used in experimental
model A, and expression (12) is used in models B
and C.

5. DETERMINATION OF CELESTIAL 
COORDINATES OF GAMMA-RAY BURSTS

5.1. General Remarks

For precise determination of the coordinates of
gamma-ray bursts, one must use the equations for light
propagation from a burst source to the spacecraft that
detects gamma-rays from the burst. The relativistic
approach to the problem of light propagation in a
curved space–time was formulated in [11] and [12].
However, since the accuracy of recording the time of
arrival of gamma-ray pulses is not as high as, for exam-
ple, when observing pulsars or in LBRI-observations, it
is sufficient to employ a simplified version of this the-
ory, disregarding the effects of the relativistic time dila-
tion in a gravitational field (the Shapiro effect).

In the barycentric coordinate system, the light prop-
agation is then described by the equation

(13)

where t is the barycentric time of detection of a gamma-
ray pulse, t∗  is the barycentric time of the gamma-ray
burst, x = x(t) is the barycentric spatial coordinates of
the point of the pulse detection, x∗  = x∗ (t∗ ) is the bary-
centric space location of the source of gamma rays, and
k is the barycentric unit vector directed from the space-
craft to the source. This vector is determined by the
relation

(14)

Here, the second term describes the annual parallactic
shift of the gamma-ray burst position; D is the distance
from the Solar system barycenter to the source of
gamma rays; and the unit vector n is directed from the
barycenter of the Solar system to the gamma-ray
source, being equal to

(15)

where α and δ are the right ascension and declination

of a gamma-ray source on the sky  < α ≤ 2π,  ≤

δ ≤ . Notice that the coordinates of vector n are

defined in the barycentric system whose axes are fixed
with respect to quasars. In practice, these coordinates
are expressed in the system in which the theory of
spacecraft motion is constructed. The orientation of this

t t*–
1
c
--- k x⋅( ) k x*⋅( )–[ ] O c 3–( ),+=

k n
1
D
---- n x n×( )×[ ] O

x2

D2
------ 

  .+ +=

n

δ αcoscos

δ αsincos

δsin 
 
 
 

,=

0
 π

2
---–

π
2
---



system is close to that of the equatorial systems DE200
or FK5 but does not precisely coincide with them.
Because of this, it is necessary to establish the relation
between coordinate systems using additional observa-
tional data. It should also be noted that the determina-
tion of the parallax and distance to gamma-ray sources
cannot be made by a system of three spacecraft; a
fourth spacecraft beyond the ecliptic plane is necessary
for this, which is difficult to realize in practice. For this
reason and assuming that D is sufficiently large (the
source of gamma rays is outside the Solar system), we
set k = n.

The light propagation in the heliocentric frame of
reference is described by the equation

(16)

where u is the geocentric time of detection of a gamma-
ray pulse, u∗  is the geocentric time of the burst, w =
w(u) is the geocentric spatial coordinates of the point of
detection of the pulse, w∗  = w∗ (u∗ ) is the spatial geo-

centric coordinates of the source, and  is the geocen-
tric unit vector directed from the spacecraft to the
source. Once again, we neglect the parallactic shift and
assume that

(17)

where  is the unit vector directed from the geocenter
to the gamma-ray source.

Now it possible to describe the algorithm of deter-
mining the coordinates of gamma-ray sources.

5.2. Barycentric Approach

Let us assume that the first and the second space-
craft detected a signal from a gamma-ray burst at the
instants t1 and t2, respectively. The barycentric coordi-
nates of the spacecraft at these instants are equal to

 = (t1) and  = (t2). According to formula
(13), the time lag between these instants will be equal
to

(18)

where b21 =  – . Using formula (9), we get

(19)

u u*–
1
c
--- k̂ w⋅( ) k̂ w*⋅( )–[ ] O c 3–( ),+=

k̂

k̂ n̂ O
x
D
---- 

  ,+=

n̂

xS1
xS1

xS2
xS2

t2 t1–
1
c
--- n b21⋅( ) O c 3–( ),+=

xS2
xS1

∆21 τ2 τ1–≡ 1
c
--- n b21⋅( ) 1

c2
---- 1

2
---v S2

2 U xS2
( )+ td

t0

t2

∫–=

+
1

c2
---- 1

2
---v S1

2 U xS1
( )+ t O c 3–( ).+d

t0

t1

∫
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Similarly, for the first and third spacecraft,

(20)

and for the second and third spacecraft,

(21)

These formulas can be used when processing the data
of observations for the model A of spacecraft configu-
ration. Their use allows one to avoid uncertainties in the
system of spherical coordinates α and δ. If the instants
of detection of a gamma-ray burst are known for three
spacecraft (τ1, τ2, and τ3), then the procedure of deter-
mining the coordinates will be as follows.

(1) The calculation of barycentric coordinates of the
spacecraft and their velocities using the radar data and
Doppler sounding.

(2) The calculation of integrals in formulas (19)–
(21).

(3) The calculation of base vectors b21, b31, and b32.
(4) Using the numerical values of ∆21, ∆31, and ∆32

and solving equations (19)–(21), one calculates the
components of vector k.

In the models of spacecraft configurations B and C,
the relativistic part in formulas (19)–(21) can be con-
siderably simplified allowing for the fact that, in these
models,  =  =  = vE and U( ) = U( ) =

U( ) = U(xE). Since the value  + U(xE) does not

significantly vary over the time intervals ∆21, ∆13, or
∆32, we arrive, as a result, at the following very simple
formulas:

(22)

(23)

∆13 τ1 τ3–≡ 1
c
--- n b13⋅( ) 1
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---- 1

2
---v S1

2 U xS1
( )+ td
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t1

∫–=

+
1
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2
---v S3
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∫
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c
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+
1
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2
---v S2
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∫
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vS3
xS1

xS2

xS3

1
2
---v E

2

∆21 τ2 τ1–≡ 1
c
--- n b21⋅( )=

× 1
1

c2
---- 1

2
---v E

2 U xE( )+–
 
 
 

O c 3–( ),+

∆13 τ1 τ3–≡ 1
c
--- n b13⋅( )=

× 1
1

c2
---- 1

2
---v E

2 U xE( )+–
 
 
 

O c 3–( ),+

(24)

In this case, the rule

(25)

is valid, which can be used for additional checking of
the synchronization procedure for spacecraft clocks.

5.3. Geocentric Approach

Formula (16) is the basic equation in the geocentric
system. We denote the geocentric vector directed to a
burst as  and the geocentric spacecraft coordinates as

, , and  at the instants of signal detection τ1,
τ2, and τ3, respectively. Then, using formula (11), we
obtain for the configuration model A

(26)

and two similar formulas for ∆31 and ∆32. For configu-
ration models B and C, expression (12) is used instead
of (11). We get

(27)

and two similar formulas for ∆31 and ∆32.
Expanding the right-hand sides into a Taylor series

in terms of the parameter τ1 and solving the equations,
we obtain the coordinates of the unit vector  in the
geocentric frame of reference. For their conversion into
the barycentric system, the relativistic transformation
of aberration [11] is used:

(28)

∆32 τ3 τ2–≡ 1
c
--- n b32⋅( )=

× 1
1

c2
---- 1

2
---v E

2 U xE( )+–
 
 
 

O c 3–( ).+

∆21 ∆13 ∆32+ + 0=

n̂
wS1

wS2
wS3

∆21
1
c
--- n̂ wS2

⋅( ) 1
c
--- n̂ wS1

⋅( )–=

+
1

c2
---- 1

2
--- v E

2 t
1
2
--- v S1

2
v S2

2–( ) td

t0

t1

∫+d

t1

t2

∫

+
1

c2
---- vE τ2( ) wS2

⋅( ) 1

c2
---- vE τ1( ) wS1

⋅( )– O c 3–( )+

∆21
1
c
--- n̂ wS2

⋅( ) 1
c
--- n̂ wS1

⋅( )–
1

c2
---- vE τ2( ) wS2

⋅( )+=

–
1

c2
---- vE τ1( ) wS1

⋅( ) O c 3–( )+

n̂

n̂ k
1
c
--- k k vE τ1( )×[ ]×[ ]+=

+
1

c2
---- 1

2
--- k vE τ1( )⋅( ) k k vE τ1( )×[ ]×[ ]





–
1
2
--- k vE τ1( )×[ ] 2k k wS1

aE τ1( )×[ ]×[ ]+




O c 3–( ),+



376

COSMIC RESEARCH      Vol. 38      No. 4      2000

KOPEIKIN et al.

where aE = dvE/dt is the barycentric acceleration of the
geocenter. Transformation (28) allows one to convert
the geocentric direction  to the gamma-ray source
into the barycentric coordinate system.

In addition, it should be noted that, in the barycen-
tric solution there is no need to take aberration into
account, though observations are carried out with mov-
ing spacecraft. The reason is that only the instants of
arrival of photons are recorded, and not their motion
directions. In the case of the geocentric approach, one
must make the aberration transformation in order to
take the Earth’s orbital motion relative to the barycen-
tric coordinate system into account.

6. ESTIMATION OF THE ERROR IN MEASURING 
TIME LAGS: METHODS AND ASSUMPTIONS

As was already said above, the accuracy of the
method of “space triangulation” of gamma-ray bursts is
determined by two factors: first, by the precision of
clocks and the accuracy of taking all relativistic correc-
tions into account (this matter was considered in the
previous paragraphs), and by the natural causes limit-
ing the accuracy, photon fluctuations and the diffused
cosmic gamma-ray background being main ones. Let
us consider the problem of limiting the accuracy of the
method, provided that the above problem of clocks and
relativistic corrections is ideally solved.

It is obvious that, for such an estimate to be made, it
is sufficient to estimate the error Et of measuring the
time lags of a signal by an ideal instrumentation,
depending on the parameters λi (i = 1, 2, …) of both the
burst and detector. This estimation was made by the
method of imitating the operation of the spacecraft with
specified detector parameters when detecting a gamma-
ray burst whose parameters were also specified. By
varying these parameters, we can obtain the required
function Et(λi).

Let us consider an idealized case: two spacecraft
detect a gamma-ray source in a direction that is com-
pletely perpendicular to the line connecting these
spacecraft and coincides with the axes of directivity
diagrams of both detectors. We assume the detectors to
operate in the mode of direct counting of photons in the
spectral range from 20 to 300 keV, the quantum effi-
ciency of detectors being equal to 100%. The area of
detectors equals S, and the acquisition interval of a sig-
nal is Tcnt. Notice that, in this case, the expected time
lag vanishes in the barycentric coordinate system; i.e.,
both spacecraft should detect the gamma-ray burst
simultaneously (there is no delay due to light aberration
in the barycentric system).

Gamma-ray bursts are characterized by the follow-
ing λi parameters: the total intensity in a specified spec-
tral range (J), duration (T), and the characteristic scale
of variability with respect to duration (∆T/T). We take
the photon spectrum of gamma-ray bursts in the form

n̂

N(E) ~ E–2, which is fairly typical. The random profile
of a gamma-ray burst is described by the following for-
mula

(29)

where Aj = aj/j, Bj = bj/j, aj and bj are random numbers
taking values from –1 to 1 and the normalizing constant
C was chosen in such a way that the total burst intensity
would be equal to J. The first multiplier in (29) includ-
ing the exponent describes the rapidly rising and slowly
decaying profile of gamma-ray bursts; the second mul-
tiplier corresponds to their fast variability. The function
f(t) vanishes outside the interval [0, T].

In order to reproduce the real observational situa-
tion, the constant background g was added to the func-
tion f(t). It was calculated for the spectral range speci-
fied above using the data of [13]. The sum f(t) + g is the
total gamma-ray flux, to which the spacecraft detectors
are exposed. The total expected number of photons to
be detected by the nth spacecraft during the ith time
interval is equal to

(30)

and is independent of the spacecraft number, because
the time lag is zero in the case under consideration. The
numbers of actually detected photons will be N1(i) and
N2(i) for the first and second spacecraft, respectively.
Both these random quantities are assumed to obey the
Poissonian distribution with a mean value N(i) for a
fixed value of i. Thus, we have imitated the output
response of two spacecraft detectors to a gamma-ray
burst.

The convolution of the responses of two spacecraft
gives an autocorrelation function for a gamma-ray burst
profile

(31)

where ∆t is the time shift. It is necessary to determine
the time that corresponds to the maximum of this func-
tion. Obviously, the deviation of this time from zero
will be equal to the error of a particular measurement of
the time lag.

The calculations were made for the set of parame-
ters presented in the table.

Burst brightness J, erg/cm2 10–8; 10–7; 10–6;

10–5; 10–4; 10–3

Burst duration T, s 1; 10

Scale of variability ∆T/T 0.01; 0.1; 1

Detector area S, cm2 100; 1000;
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The interval of signal acquisition has one and the
same value 10–3 s (of the order of the best possible
accuracy for time lag measurements), since there is not
much sense in changing this interval, as will be demon-
strated lower. Thus, we have 72 possible combinations
of parameters of the burst and the detector. For each of
these combinations, the procedure was repeated for 100
random profiles of a gamma-ray burst (with different aj

and bj). Then, the root mean square error of determin-
ing the time lag for the given parameters of the burst
and the detector was calculated.

It should also be noted that, before the determination
of the time of the maximum of the autocorrelation func-
tion, each of these 7200 functions was subject to a fast
Fourier transform on the interval from –1.024 to 1.023 s
(it is sufficiently wide to include with certainty the time
of the maximum). This was done in eight different ways,
the number of the first excluded harmonic being 2, 4, 8,
16, 32, 64, 128, and 256. Out of these eight variants, we
have chosen the one that gave the least root mean square
error for 100 measurements with the specified set of
parameters. It is quite natural that, in this case, the num-
ber of first excluded harmonic increased from 2–8 for
slightly variable bursts (∆T/T = 1) up to 64–256 for
strongly variable bursts (∆T/T = 0.01).

From obtained root mean square values of the error
Et in measuring the time lags, the following empirical
formula was derived:

(32)

Et c( )log 4.240– 0.515 J  erg/cm2( )log–=

+ 0.947 T  s( ) 0.522 ∆T /T( )log+log

– 0.497 S cm2( ).log

The values of the coefficients turned out to be quite pre-
dictable: Et depends on J and S approximately as an
inverse square root, and its dependence on T is almost
linear: the accuracy of the method rapidly deteriorates
with increasing burst duration at its fixed total bright-
ness. It is also natural that the accuracy becomes better
for strongly variable bursts. Formula (32) is valid with
a good accuracy (the mean deviation of  is equal
to 0.15), and it can extrapolated to a wider interval of
parameters. This formula can also be generalized for
the cases of nonideal quantum efficiency and arbitrary
orientation of detectors. In these cases, the detector
area should be multiplied by the quantum efficiency
and the burst intensity should be multiplied by the
angle of the burst’s deviation from the axis.

To conclude this section, let us return to the prob-
lem of choosing the interval of signal acquisition. Fig-
ure 3 presents a comparative diagram of the error in
determining the signal time lags at different combina-
tions of burst and detector parameters for the intervals of
signal acquisition 10–3 (abscissa axis) and 10–2 (ordinate
axis). One can see that, at the errors exceeding
10−1−10–2 s, the errors do not depend on the acquisition
interval, and, at lower values, they are smaller for Tcnt =
10–3 s. From this, one can conclude that the acquisition
time should not exceed the least error of the time lag
determination (equal to 10–3 s in our case); its further
diminishing will yield no gain. Therefore, we have cho-
sen 10–3 s as the only optimum interval of acquisition.

7. ESTIMATION OF EFFICIENCY 
OF THE METHOD

Using formula (32), we can estimate the accuracy of
measuring the coordinates of any gamma-ray burst,

Etlog

100.010.0010.10.01

0.1

1.0

10.0

100.0

Et, ms
Tcnt = 10–3 s

Et, ms
Tcnt = 10–2 s

Fig. 3. Comparison of errors in measuring the time lags at different times of signal acquisition. 
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provided its parameters are specified, as well as detec-
tor parameters. Passing on to the system of three space-
craft (model C), we get from formula (2) the relation of
the error in coordinate measurements with the error in
measuring the time lags (assuming the base L to be
known exactly):

(33)

where b is the ecliptic latitude of a gamma-ray burst.
Notice that the burst brightness J in formula (32)
should also be multiplied by the |sinb | factor.

If now we take the distribution of gamma-ray bursts
from the fourth BATSE catalog over the specified
parameters and take their isotropic distribution over the
sky into account, then, using formulas (32) and (33), we
can calculate for what fraction of already known bursts
the coordinates could be measured with a predeter-
mined accuracy. The system of three detectors with
area S and 100% quantum efficiency is assumed to be
used (in the case of nonideal detectors, S should be
treated as a product of the area by the quantum effi-
ciency). The results of these calculations for areas of
100 and 1000 cm2 are presented in Fig. 4. One can see
that, for 10% of all bursts, their coordinates could be
measured with an accuracy of 1″, and, for a half of the
bursts, this accuracy could be of the order of 10″. This
accuracy is much better than that which is typical for
the majority of present-day coordinate measurements
of gamma-ray bursts. When achieved, it would allow
one to make reliable identification of gamma-ray bursts
with known celestial objects.

8. CONCLUSION

We considered the method of “space triangulation”
as applied to measuring the coordinates of gamma-ray

Eα'' 206265''
Etc

L bsin
-----------------,=

bursts on the sky. Two factors were found to determine
the accuracy of this method. The first factor is the pre-
cision of operation of instruments and the accuracy of
taking necessary relativistic correction into account,
when the time of signal detection is calculated. The sec-
ond one is natural causes that bound the accuracy of
measuring the time lags and, hence, the accuracy of
determining the coordinates of gamma-ray bursts.

For successfully solving the first of these problems,
the barycentric approach is most suitable. However, it
requires calculation of the barycentric orbits of space-
craft with a very high precision. In addition, the com-
putation of integrals in formula (19) can be a problem,
thus leading to a loss of accuracy.

In the case of the geocentric approach, one can use
in formula (26) the data of immediate sounding of the
spacecraft, which excludes the necessity of calculating
the integrals that describe transformations of the time
scales. However, the necessity of calculating the aber-
ration corrections in the direction of a gamma-ray
source appears. This, in its turn, requires the barycen-
tric theory of motion of spacecraft and the Earth to be
applied.

In both the cases, the barycentric coordinates, veloc-
ity, and geocenter acceleration are calculated according
to a modern theory of the Earth’s motion, for example,
DE200. At present, this is not a difficult thing to do.

As a result of this consideration, it was found that,
with all requirements satisfied, the coordinates of a
considerable fraction of gamma-ray bursts could be
measured with an accuracy of 10″, and, for some bursts,
the accuracy could reach and even exceed 1″. This
accuracy would be sufficient for identifying the
gamma-ray bursts with known celestial objects and for
understanding their physical nature.
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